Subsurface scattering

Jaroslav Křivánek, KSVI, MFF, UK

Jaroslav.Krivanek@mff.cuni.cz

Subsurface scattering examples

BSSRDF

- Bidirectional surface scattering distribution function [Nicodemus 1977]
 - BD function (2x2 DOFs for surface + 2x2 DOFs for dirs)
 - Differential outgoing radiance per differential incident flux (at two possibly different surface points)

$$dL_o(x_o, \vec{\omega}_o) = S(x_i, \vec{\omega}_i; x_o, \vec{\omega}_o) \, d\Phi_i(x_i, \vec{\omega}_i)$$

Encapsulates all light behavior under the surface

BSSRDF vs. BRDF

BRDF is a special case of BSSRDF (same entry/exit pt)

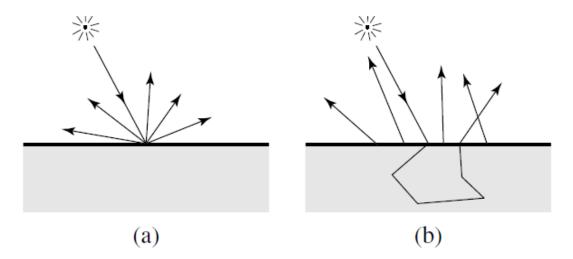


Figure 1: Scattering of light in (a) a BRDF, and (b) a BSSRDF.

BSSRDF vs. BRDF examples 1

BSSRDF vs. BRDF examples

BRDF – hard, unnatural appearance

BSSRDF vs. BRDF examples

Show video (SIGGRAPH 2001 Electronic Theater)

BSSRDF vs. BRDF

- Some BRDF model do take subsurface scattering into account (to model diffuse reflection)
 - **[Kruger and Hanrahan 1993]**
- BRDF assumes light enters and exists at the same point (not that there isn't any subsurface scattering!)

Generalized reflection equation

• Remember that $dL_o(x_o, \vec{\omega}_o) = S(x_i, \vec{\omega}_i; x_o, \vec{\omega}_o) d\Phi_i(x_i, \vec{\omega}_i)$

• So total outgoing radiance at x_0 in direction ω_0 is

$$L_o(x_o, \vec{\omega}_o) = \int_A \int_{2\pi} S(x_i, \vec{\omega}_i; x_o, \vec{\omega}_o) L_i(x_i, \vec{\omega}_i) \left(\vec{n} \cdot \vec{\omega}_i \right) d\omega_i dA(x_i)$$

• (added integration over the surface)

Subsurface scattering simulation

- Path tracing way too slow
- Photon mapping practical [Dorsey et al. 1999]

Simulating SS with photon mapping

- Special instance of volume photon mapping [Jensen and Christensen 1998]
- Photons distributed from light sources, stored inside objects as they interact with the medium
- Ray tracing step enters the medium and gather photons

Problems with MC simulation of SS

- MC simulations (path tracing, photon mapping) can get very expensive for high-albedo media (skin, milk)
- High albedo means little energy lost at scattering events
 Many scattering events need to be simulated (hundreds)
- Example: albedo of skim milk, a = 0.9987
 - □ After 100 scattering events, 87.5% energy retained
 - □ After 500 scattering events, 51% energy retained
 - After 1000 scattering events, 26% energy retained
- (compare to surfaces, where after 10 bounces most energy is usually lost)

Practical model for subsurface scattering

- Jensen, Marschner, Levoy, and Hanrahan, 2001
 Won Academy award (Oscar) for this contribution
- Can find a diffuse BSSRDF R_d(r), where r = ||x₀ x_i||
 1D instead of 8D !

Practical model for subsurface scattering

Several key approximations that make it possible

- **Principle of similarity**
 - Approximate highly scattering, directional medium by isotropic medium with modified ("reduced") coefficients
- **Diffusion approximation**
 - Multiple scattering can be modeled as **diffusion** (simpler equation than full RTE)
- **Dipole approximation**
 - Closed-form solution of diffusion can be obtained by placing two virtual point sources in and outside of the medium

Approx. #1: Principle of similarity

- Anisotropically scattering medium with high albedo approximated as isotropic medium with
 - reduced scattering coefficient: $\sigma'_s = \sigma_s(1-g)$
 - reduced extinction coefficient: $\sigma'_t = \sigma'_s + \sigma_a$

a (absorption coefficient stays the same)

Recall that g is the mean cosine of the phase function:

$$g = \int_{4\pi} (\vec{\omega} \cdot \vec{\omega}') p(\vec{\omega} \cdot \vec{\omega}') \, d\omega'$$

 Equal to the anisotropy parameter for the Henyey-Greenstein phase function

Intuition behind the similarity principle

Isotropic approximation

- Even highly anisotropic medium becomes isotropic after many interactions because every scattering blurs light
- Reduced scattering coefficient $\sigma'_s = \sigma_s(1-g)$
 - Strongly forward scattering medium, g = 1
 - Actual medium: the light makes a strong forward progress
 - Approximation: small reduced coeff => large distance before light scatters
 - Strongly backward scattering medium, g = -1
 - Actual medium: light bounces forth and back, not making much progress
 - Approximation: large reduced coeff => small scattering distance

Approx. #2: Diffusion approximation

- We know that radiance mostly isotropic after multiple scattering; assume homogeneous, optically thick
- Approximate radiance at a point with just 4 SH terms:

$$L(x,\vec{\omega}) = \frac{1}{4\pi}\phi(x) + \frac{3}{4\pi}\vec{\omega}\cdot\vec{E}(x)$$

Constant term: scalar irradiance, or fluence

$$\phi(x) \quad = \quad \int_{4\pi} L(x,\vec{\omega}) \, d\omega$$

Linear term: vector irradiance

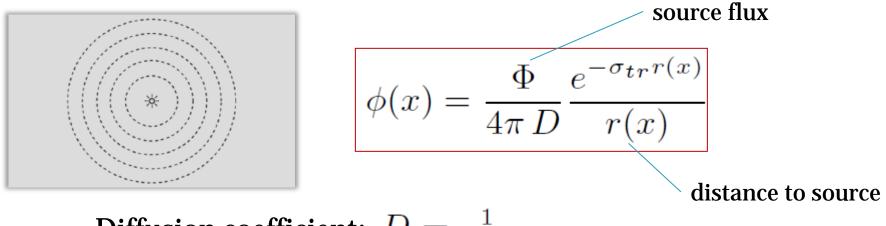
$$\vec{E}(x) = \int_{4\pi} L(x, \vec{\omega}) \vec{\omega} \, d\omega$$

Diffusion approximation

- With the assumptions from previous slide, the full RTE can be approximated by the **diffusion equation**
 - Simpler than RTE (we're only solving for the scalar fluence, rather than directional radiance)
 - Skipped here, see [Jensen et al. 2001] for details

Solving diffusion equation

- Can be solved numerically
- Simple analytical solution for point source in infinite homogeneous medium:



Diffusion coefficient: $D = \frac{1}{3\sigma'_t}$

• Effective transport coefficient: $\sigma_{tr} = \sqrt{3\sigma_a\sigma'_t}$

Solving diffusion equation

- Our medium not infinite, need to enforce **boundary** condition
 - Radiance at boundary going down equal to radiance incident at boundary weighed by Fresnel coeff (accounting for reflection)
- Fulfilled, if \u03c6(0,0,2AD) = 0 (zero fluence at height 2AD)
 where

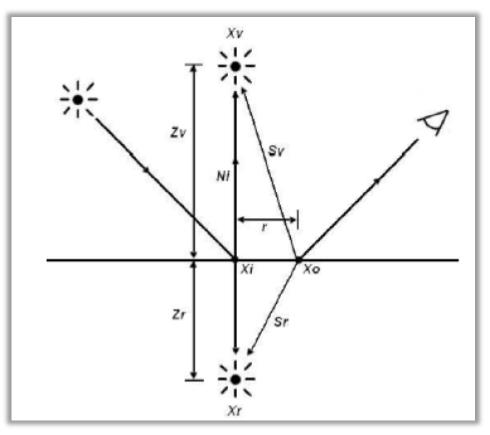
$$A = \frac{1 + F_{dr}}{1 - F_{dr}}$$

Diffuse Fresnel reflectance

$$F_{dr} = \int_{2\pi} F_r(\eta, \vec{n} \cdot \vec{\omega}')(\vec{n} \cdot \vec{\omega}') \, d\omega' \text{ approx as } -\frac{1.440}{\eta^2} + \frac{0.710}{\eta} + 0.668 + 0.0636\eta$$

Dipole approximation

 Fulfill \u03c6(0,0,2AD) = 0 by placing two point sources (positive and negative) inside and above medium



$$z_r = 1/\sigma_t',$$
one mean free path below surface

Dipole approximation

Fluence due to the dipole (d_r ... dist to real, d_v ... to virtual)

$$\phi(x) = \frac{\Phi}{4\pi D} \left(\frac{e^{-\sigma_{tr}d_r}}{d_r} - \frac{e^{-\sigma_{tr}d_v}}{d_v} \right)$$

Diffuse reflectance due to dipole

 We want radiant exitance (radiosity) at surface...
 (gradient of fluence)

 $R_d(r)$ =

- (gradient of fluence)
- ... per unit incident flux

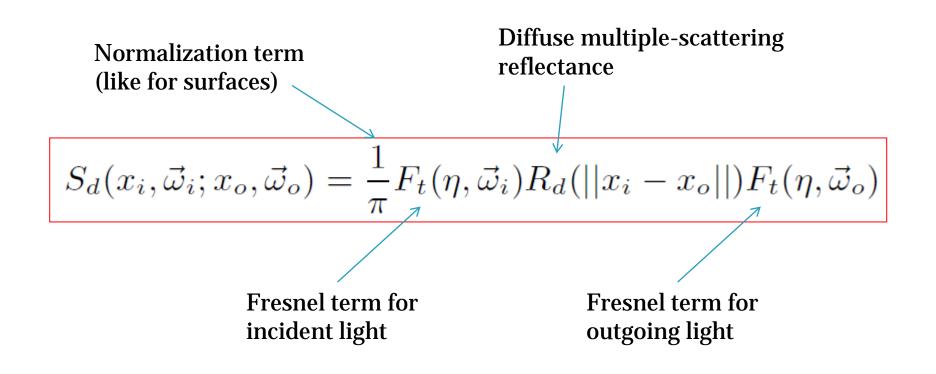
Diffuse reflectance due to dipole

Gradient of fluence per unit incident flux

gradient in the normal direction = derivative w.r.t. z-axis

$$R_d(r) = -D \frac{\left(\vec{n} \cdot \vec{\nabla} \phi(x_s)\right)}{d\Phi_i}$$
$$= \frac{\alpha'}{4\pi} \left[\left(\sigma_{tr} d_r + 1\right) \frac{e^{-\sigma_{tr} d_r}}{\sigma'_t d_r^3} + z_v \left(\sigma_{tr} d_v + 1\right) \frac{e^{-\sigma_{tr} d_v}}{\sigma'_t d_v^3} \right]$$

Final diffusion BSSRDF



Diffusion profile

• Plot of R_d

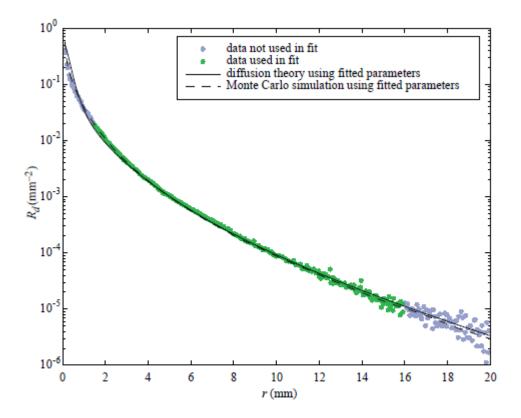


Figure 6: Measurements for marble (green wavelength band) plotted with fit to diffusion theory and confirming Monte Carlo simulation.

Single scattering term

- Cannot be described by diffusion
- Much shorter influence than multiple scattering
- Computed by classical MC techniques (marching along ray, connecting to light source)

Rendering BSSRDFs

Rendering with BSSRDFs

- 1. Monte Carlo sampling [Jensen et al. 2001]
- 2. Hierarchical method [Jensen and Buhler 2002]
- 3. Real-time approximations exist but are skipped here

Monte Carlo sampling

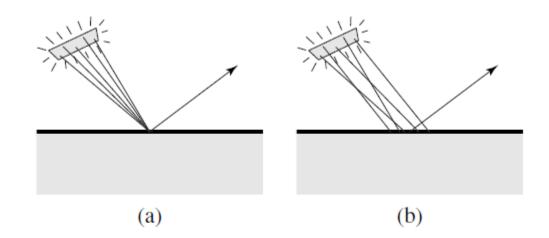


Figure 7: (a) Sampling a BRDF (traditional sampling), (b) sampling a BSSRDF (the sample points are distributed both over the surface as well as the light).

Hierarchical method

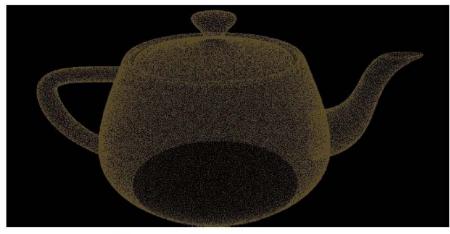
- Key idea: decouple computation of surface irradiance from integration of BSSRDF
- Algorithm
 - **Distribute many points on translucent surface**
 - **Compute irradiance at each point**
 - Build hierarchy over points (partial avg. irradiance)
 - For each visible point, integrate BSSRDF over surface using the hierarchy (far away point use higher levels)

Hierarchical method - Results

BSSRDF: sampled evaluation 18 minutes

BSSRDF: hierarchical evaluation 7 seconds

Illumination from a HDR environment



The sample locations on the teapot

Multiple Dipole Model

Donner and Jensen, SIGGRAPH 2005

Multiple Dipole Model

- Dipole approximation assumed semi-infinite homogeneous medium
- Many materials, namely skin, has multiple layers of different optical properties and thickenss
- Solution: infinitely many point sources

 $\bigcirc Z_{v,-1}$

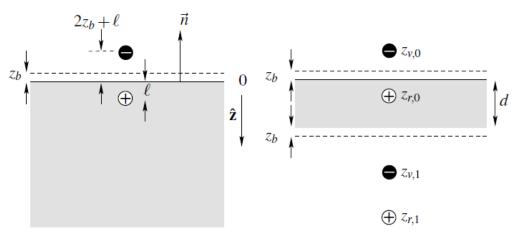


Figure 1: Dipole configuration for semi-infinite geometry (left), and the multipole configuration for thin slabs (right).

Multiple Dipole Model - Results

Epidermis Reflectance

Epidermis Transmittance

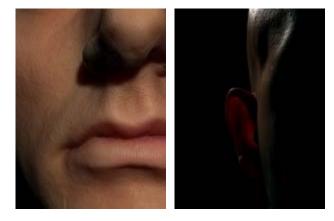
Upper Dermis Reflectance

Upper Dermis Transmittance

Bloody Dermis Reflectance

Roughness

All Layers



References

PBRT, section 16.5